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Abstract 

Leibniz'  principle and the  observational dominance  o f  Euclidean geometry  suggest a 
huge cosmological  cons tant  in Einste in 's  field equat ions and a correspondingly huge 
negative " v a c u u m "  density.  This theory  lends support  to renormalizat ion procedures  
in q u a n t u m  electrodynamics  and to the view that  the  interactions we "observe"  are 
f luctuat ions  of  the  " v a c u u m  state"  interpreted as a Fermi  sea. Einstein 's  "preferred" 
equations,  with A = 0, are recovered. " E m p t y "  space has no metric geomet ry  at all. 

1. Introduction 

Leibniz, contemporary of Newton, is credited with a strong belief in the 
principle that matter determines geometry, a principle dating back to the 
ancient Greeks. Ernst Mach, in the 1800's, championed a related principle, 
namely, that distant stars determine the inertia of local bodies. In this paper, 
the first principle is referred to as the Leibniz principle; the second, as the 
Mach principle; the two together, as the Leibniz-Mach principles. 

The Leibniz-Mach principles are heuristically desirable guides for physical 
theories, at least as far as this author is concerned. A strong faith in them 
suggests that if "matter" is to determine geometry, we can learn much about 
the predominant distribution of matter in the universe by examining the 
nature of the predominant geometry. In the next section, we pursue this 
examination and are heuristically led to the idea of a very high density back- 
ground distribution of "matter." That is, we are led to the idea that the 
"vacuum" is a uniform high density matter distribution, "high" density 
meaning a density much greater than that of any currently observed or proposed 
structures, including neutron stars and even black holes. We find that this 
suggests a very large value for the cosmological constant in Einstein's field 
equations. In fact, it suggests that c2A/87m is the negative of the large back- 
ground density, and thus, in magnitude, must be much larger than the largest 
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densities observed or predicted to be observable. Here e is ~3 x 10 8 m/sec 
and K is Newton's gravitational constant, "-~ x 10 -1° N m2/kg 2. 

Having proposed this huge A on the basis of the Leibniz principle, we 
proceed in a later section to give a treatment which recovers Einstein's 
"preferred" equations, the field equations with A = 0. The paper concludes 
with a discussion indicating future work. 

2. The Dominant Distribution o f  Matter as Suggested 
by the Leibniz Principle 

We begin with a strong belief in the Leibniz principle: matter determines 
geometry. We look at the geometry that dominates all our successful des- 
criptions of natural phenomena: the Euclidean, or Lorentzian, geometry of 
special relativity. Einstein's principle of equivalence, assumed valid even in 
the black holes of current geometrodynamic theory (Mimer et al., 1973), 
predicts that the special relativistic Euclidean geometry is always valid 
locally-it always dominates. In everyday experience here on earth, in our 
solar system, the Euclidean geometry has yet to fail us significantly even in 
the large. Thus, the Leibniz principle combined with these observations seems 
to suggest that nothing in our experience, i.e., no matter distribution in our 
experience, is very significant compared to the distribution which determines 
the Euclidean geometry. Thus, one is led to a dominant matter distribution 
which generates a Euclidean geometry and which is very little affected by 
even the densest known observable matter distribution. 

Consider the contrary. Suppose the Euclidean-generating distribution were 
very small; i.e., suppose a low density "vacuum," say, e.g., 10 -3o g/crn 3 (the 
present-day maximum limit on the intergalactic density). Then one would 
expect, on the basis of the Leibniz principle, that the appropriate geometry 
for describing experiments under water, which has a density ~1 g/cm 3, 
would be very different from Euclidean geometry. Experience has failed to 
prove Euclidean geometry inappropriate under water. In fact, experience 
has failed to indicate significant deviations from a Euclidean geometric 
description in the densest distributions yet observed. Even in theories con- 
templating much denser distributions than those so far observed, e.g., in 
theories of the black holes of geometrodynamics, Einstein's principle of 
equivalence is assumed (Misner et al., 1973). That is, it is assumed that the 
local geometry is still Euclidean. Thus we are experimentally led to the 
dominance of the Lorentz-Euclidean geometry and hence, via the Leibniz 
principle, to a huge background matter density, i.e., to a very high density 
"vacuum." 

Let us see what this means in Einstein's field equations. Using the positive 
time sign convention of Adler et al. (1975), the Einstein equations read 

G.v + Aggv = -8zrK Tuv/c 2 

We now consider "fiat" space, "fiat" here meaning a Euclidean space, wltn 
zero curvature. Note well that "fiat" does NOT mean completely "empty." 

(1) 
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It means Euclidean, and since, in the Leibniz spirit, matter determines geo- 
metry, a Euclidean space cannot be "empty."  It does have a metric; it does 
exist. So then some "matter" must exist in a Euclidean space. In fact, 
Einstein's Eq. (1) relates A to the matter distribution which generates a 
Euclidean geometry. "Euclidean" means g.v = ~7.v, where ~ v  is the Lorentz 
me t tic: 

- 1  0 
%v  = 0 - 1  (2) 

0 0 - 

Thus, for a Euclidean space, Guy = 0 and we have the matter distribution 
T (EUe) given by 

Tu EUc) = - (e2A/8m¢) ~/uv (3) 

As argued above, the Leibniz principle plus the observation of the dominance 
of Euclidean geometry suggests that T (EUC) must be hu e corn ared to all 
observed densities. Thus A, too, must ~e huge. The proposal, thPn, is a very 
large A for the Einstein field Eq. (1), a A many orders of magnitude larger 
than the densest "observable" matter distribution. Such a A is consistent 
with the dominance of Euclidean-Lorentzian geometry in the description 
of observed physical phenomena. The large T(EUc) is to be taken as the gv  
"vacuum"; it is the energy-momentum tensor for "flat" space, for what here- 
tofore has been called "empty"  space. The observational matter distributions 
are to be interpreted as small fluctuations in T,u away from T (EUc) 
Section 3 expands on this point. 

Note that truly "empty"  space, meaning a Tgv = 0, has as a solution, 
since A is so large, guy = 0. That is: NO matter means NO metric, no geo- 
metry! This is epistemologically very satisfying, according to the Leibniz 
principle. I can think of only one other possibility for g,v in the absence of 
matter which might be epistemologically preferable, and that is an undefined 
metric. If  the field Eq. (I)  with huge A were not solvable for g,v when 
Tuv = 0, I would be happier. However, it is clearly solvable with guy = 0, 
and this is satisfactory.* 

3. Correspondence with the Einstein "Preferred'Equations 

Einstein evidently preferred the field Eqs. (1) with A = 0, having said, 
according to Gamow,? that the introduction of the A term was "the biggest 

* Actually,  Eq. (1) is operationally insoluble ifg~v = O, since g/2v = 0 means  we can 
per form no length or t ime measurements ,  hence can operationally define no co- 
ordinate  systems,  hence can take no derivatives. Thus  Ggv is undef ined operationally,  
and we canno t  even say tha t  g~w = 0. Operationally,  then,  Eq. (1) seems to  have the  
desirable proper ty  o f  being incleterminate if T~v = 0; and,  after all, operationally is 
the  only  way we "real ly" exist in physics. Of  course,  ifg~v = 0 is no t  the  only 
solution to Eq. (1) when  T~v = 0, these a rguments  will need revision. A uniqueness  
p roof  for (1) when  T~v = 0 would thus  be highly desirable. Such a p roof  would 
assume differentiat ion to be defined for any  gl~v, even for g#v = O. 

+ G. G a m o w  quot ing  Einstein in Misner et at. (19 73), pp.  410-411 .  
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blunder of my life." We shall therefore call Eqs. (1) with A = 0 the Einstein 
preferred equations. In this section we study a treatment of  Eq. (1) with 
large A which reproduces the Einstein preferred equations. In this treatment 
fluctuations in the matter distribution replace the full Tvv. We write the 
field equations in mixed form*: 

G~tv + AShy = -87rT1% (4) 

Here 8~tv is the Kronecker delta. Also, we write 

T~Zv = Tv(EUC) + fvv (5) 

where Tv(vEUC) is the large background or "vacuum" part of T'% andf~v is 
the energy-momentum stress tensor for fluctuations relative to the vacuum. 
Note that T p(EUC) is the energy-momentum stress tensor which generates 
the Euclidean "flat" geometry. If we now take T ~z(EUc) to be -AS~v/8 n, Eq. 
(4) reduces to 

Guy = _87r fPv (6) 

which is precisely Einstein's preferred field equation with fluctuations in the 
vacuum serving as the observable matter distribution in the universe. Here 
flat space corresponds to fvv = 0, i.e., to the vacuum, and all the results of 
standard relativity theory are reproduced, with the masses and pressures 
simply identified now as fluctuations in a very dense background. 

Several points need to be made here. First, this procedure has given 
epistemological support to Einstein's preferred equations. We began by 
determining A from the combination of the observed dominance of  Euclidean 
geometry in our universe plus a desirable epistemologicaI principle, that of  
Leibniz. This led to a large background, or vacuum, density, which in turn 
led to interpretation of observed matter as small fluctuations in the very 
dense background. The full field equations, with large A and large T~(vEUC), 
then led to Einstein's preferred equations, with no choice any more as to a 
linear guy term. 

Second, in this section we have taken A to be given by -87rT ° o (EUC), 
whereas previously A was taken to be -8nToo (Euc). In a flat space, with no 
fluctuations of T~v, these identifications would be equivalent. In a nonflat 
space they are not, since in general 

TVv = ~, gVaTav (7) 
OL 

and g~a is not in general ~ga. We have, in short, three choices, or three 
theories, to decide among: 

-81rT (EUC) = A ~ v  (8) 

-87rT"v (EUC) = AS~ (9) 

o r  

_87rTUV(EUC) = A~u v 

* Henceforth we use geometrodynamic units, K = c = 1. See Misner et al. (1973). 

(10) 
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Theory (9), as we have seen, reproduces the standard general relativistic 
theory. As is shown in a following paper, theory (8) and perhaps theory (10) 
seem to imply quantum wave mechanics. To make the choice, one guesses we 
will need to appeal to experiment. Consideration of conservation laws may 
suffice. 

Third, note that if A is taken as a large positive number then the vacuum 
has a large negative mass density. If A is taken as large and negative, we have 
a large positive background density. The Fermi sea, the vacuum state of Dirac 
electron theory, is a large, in fact infinite, negative mass-energy distribution. 
A positive sign for A would be consistent with, in fact would lend support 
to, this Fermi sea theory. Further, the huge but finite A proposed here 
suggests a noninfinite Fermi sea, and thus suggests the associated possibilities 
of a finite renormalization procedure and a finite justification for perturbation 
theory in quantum physics. Also, as we shall see in a following paper, a positive 
A seems to imply quantum wave equations. Thus, one is inclined to pick the 
positive sign for A and thus make the vacuum a finite high density negative 
mass-energy background, i.e., a Fermi sea. 

4. Discussion 

This paper gives a satisfying epistemological basis for a high density vacuum 
and for Einstein's preferred field equations. The high density vacuum of 
negative sign, associated with a huge positive A, is interpretable as a finite 
Fermi sea. The finiteness of this Fermi sea lends support to renormalization 
theory in quantum electrodynamics, as it suggests that one can renormalize 
with huge, but finite, and not infinite, terms. The finiteness of the vacuum 
density also holds hope of a rigorous justification of perturbation theory in 
quantum electrodynamics. 

Furthermore, the Leibniz principle plus general relativity, combining to 
suggest the large A concept, hold the promise of eliminating the need to 
consider cosmological boundary conditions; i.e., they suggest that the nature 
of the "distant" universe is intimately connected with local physics. One 
conjectured effect of distant parts of the universe, i.e., of cosmological 
boundary conditions, on local physics is their determination of inertial mass. 
This is Mach's principle. Thus, the huge A theory proposed here may incor- 
porate Mach's principle at a fundamental epistemological level. 

In closing, let us briefly consider some possibilities for further work. A 
strong candidate for the development of the large A field equations is an 
approach from the quaternion points of view recently developed by Sachs 
(t  967-72) and Edmonds (1974). In fact, a following paper (Nicke rson, 1975b) 
outlines a somewhat more general approach utilizing complex quatemion 
algebra, which is the highest dimensional division algebra possible (Paige & 
Swift, 1961). The program, following Sachs, is to factor the large A field 
equations into linear quaternion, i.e. spinor, factors and then to use non- 
linear couplings to achieve derived masses and, hopefully, to derive the 
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fundamental  constants of physics. Actually, as indicated in another paper 
(Nickerson, 1975a), hopefully, quantum mechanics will be incorporated in 
this program at an early stage. 
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